Decomposition and Arrow-Like Aggregation of Fuzzy Preferences
نویسندگان
چکیده
منابع مشابه
some properties of fuzzy hilbert spaces and norm of operators
in this thesis, at first we investigate the bounded inverse theorem on fuzzy normed linear spaces and study the set of all compact operators on these spaces. then we introduce the notions of fuzzy boundedness and investigate a new norm operators and the relationship between continuity and boundedness. and, we show that the space of all fuzzy bounded operators is complete. finally, we define...
15 صفحه اولAggregation of fuzzy preferences: Some rules of the mean
This paper studies by means of reciprocal fuzzy binary relations the aggregation of preferences when individuals show their preferences gradually. We have characterized neutral aggregation rules through functions from powers of the unit interval in the unit interval. Furthermore, we have determined the neutral aggregation rules that are decomposable and anonymous. In this class of rules, the co...
متن کاملArrow theorems in the fuzzy setting
Throughout this paper, our main idea is to analyze the Arrovian approach in a fuzzy context, paying attention to different extensions of the classical Arrow's model arising in mathematical Social Choice to aggregate preferences that the agents define on a set of alternatives. There is a wide set of extensions. Some of them give rise to an impossibility theorem as in the Arrovian classical mod...
متن کاملProperties of fuzzy relations and aggregation process in decision making
In this contribution connections between input fuzzy relations R1, . . . ,Rn on a set X and the output fuzzy relationRF = F(R1, . . . ,Rn) are studied. F is a function of the form F : [0, 1]n → [0, 1] and RF is called an aggregated fuzzyrelation. In the literature the problem of preservation, by a function F, diverse types of properties of fuzzy relationsR1, . . . ,Rn is examined. Here, it is c...
متن کاملAggregation of coarse preferences
We consider weak preference orderings over a set An of n alternatives. An individual preference is of refinement ≤ n if it first partitions An into subsets of ‘tied’ alternatives, and then ranks these subsets within a linear ordering. When < n, preferences are coarse. It is shown that, if the refinement of preferences does not exceed , a super majority rule (within non-abstaining voters) with r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics
سال: 2020
ISSN: 2227-7390
DOI: 10.3390/math8030436